Online Learning for Offroad Robots: Spatial Label Propagation to Learn Long-Range Traversability
نویسندگان
چکیده
We present a solution to the problem of long-range obstacle/path recognition in autonomous robots. The system uses sparse traversability information from a stereo module to train a classifier online. The trained classifier can then predict the traversability of the entire scene. A distance-normalized image pyramid makes it possible to efficiently train on each frame seen by the robot, using large windows that contain contextual information as well as shape, color, and texture. Traversability labels are initially obtained for each target using a stereo module, then propagated to other views of the same target using temporal and spatial concurrences, thus training the classifier to be viewinvariant. A ring buffer simulates short-term memory and ensures that the discriminative learning is balanced and consistent. This long-range obstacle detection system sees obstacles and paths at 30-40 meters, far beyond the maximum stereo range of 12 meters, and adapts very quickly to new environments. Experiments were run on the LAGR robot platform.
منابع مشابه
Learning Long-Range Vision for an Offroad Robot
Teaching a robot to perceive and navigate in an unstructured natural world is a difficult task. Without learning, navigation systems are short-range and extremely limited. With learning, the robot can be taught to classify terrain at longer distances, but these classifiers can be fragile as well, leading to extremely conservative planning. A robust, high-level learning-based perception system f...
متن کاملVisual Terrain Traversability Estimation Using a Combined Slope/Elevation Model
A stereo vision based terrain traversability estimation method for offroad mobile robots is presented. The method models surrounding terrain using either sloped planes or a digital elevation model, based on the availability of suitable input data. This combination of two surface modeling techniques increases range and information content of the resulting terrain map.
متن کاملPerformance Evaluation of a Terrain Traversability Learning Algorithm in The DARPA LAGR Program
The Defense Applied Research Projects Agency (DARPA) Learning Applied to Ground Vehicles (LAGR) program aims to develop algorithms for autonomous vehicle navigation that learn how to operate in complex terrain. For the LAGR program, The National Institute of Standards and Technology (NIST) has embedded learning into a control system architecture called 4D/RCS to enable the small robot used in t...
متن کاملLearning traversability models for autonomous mobile vehicles
Autonomous mobile robots need to adapt their behavior to the terrain over which they drive, and to predict the traversability of the terrain so that they can effectively plan their paths. Such robots usually make use of a set of sensors to investigate the terrain around them and build up an internal representation that enable them to navigate. This paper addresses the question of how to use sen...
متن کاملTraversability: A Case Study for Learning and Perceiving Affordances in Robots
The concept of affordances, introduced by J.J. Gibson in Psychology, has recently attracted interest in autonomous robotics towards the development of cognitive systems. In earlier work (Şahin et al., Adaptive Behavior, vol.15(4), pp. 447-472, 2007), we reviewed the uses of this concept in different fields and proposed a formalism to use affordances at different levels of robot control. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007